Spinal Implant Manufacturing Using EP-M250 Metal 3D Printer

August 13, 2019

Share on facebook
Share on twitter

Customizing treatments with additive manufacturing

As additive manufacturing technologies continue to advance so do their applications and accessibility. While rapid prototyping and tooling have been at the forefront of 3D printing, the endgame has always been to be able to print directly into production, or direct to manufacturing. The medical world is no different. While the first applications of 3D printing in medical fields were prototyping and visualization guides, the technology has finally reached the point of customized implants using state of the art 3D Printers.

SHINING 3D has always stayed true to their vision of making customized 3D solutions available to everyone. With the latest line of 3D Metal Printers SHINING 3D has attracted the attention of partners in the medical world that are putting this technology to incredible use. One of the partners that is pioneering the way medical implants are created and used is MANTIZ.

MANTIZ is a medical device company driven to utilize superior engineering and technology to achieve pain-free, active lives for all patients with spinal disorders. MANTIZ has received KFDA Certification (Medical device approval) and was listed in the HIRA (Health insurance review and assessment) list for South Korea. MANTIZ started the development of their 3D Printed Cage implants in 2018 with the approval and funding of their government. In May of 2019, they launched PANTHER 3D printed cage system for PLIF (posterior lumbar interbody fusion) /TLIF / OLIF / ALIF surgery. This process would use their 3D printed cage implants without the need of outsourcing the production process to a 3rd party. This in turn saves the clients time, money, and the reduces the chances of mistakes in production. MANTIZ is using the EP-M250 metal 3d printer from SHINING 3D to manufacture Titanium 3D printed cages and use them in the implant surgery. The entire process to make the shape of implants is done in-house by MANTIZ. The cages are designed to specification; size, material, shape and porosity are all vital to the effectiveness of the implant. The completed design for the cages is uploaded into the printer’s software where it is prepped for printing. Using the EP-M250’s large print bed they are able to print over 50 individual implants in one build. Once implanted, the surrounding bone and tissue begin to fuse with the implant creating a solid structure in the patient’s spine. The inventor of PANTHER 3D printed cage system in MANTIZ, Hongwon Yoon (CTO of MANTIZ), said “We have completed the development of more improved Titanium 3D printed cage implant using EP-M250 metal 3d printer. The mechanical test results prove the safety and functionality of our implants. The average closed porosity of 3D printed titanium solid part is 3%. It leads to accelerated protein and mesenchymal stem cell attachment for bone fusion.”

Please see the images below to see the complete process, from design to print and from print to implant. The world of 3D printing continues to grow and while the technology advances, so do the direct applications. Having the capability of customization right at your fingertips has never been more accessible. Automotive, aerospace, and medical industries are now 3D printing directly into production and we’ve only just scratched the surface of what the technology is capable of. For more information on how you can apply additive manufacturing into your everyday workflow, please contact SHINING 3D directly at sales@shining3d.com

Design and 3D Printing Process:

Designing the implant cage in professional 3D software

Prepping the parts in 3D printing software

Using SHINING 3D’s EP-M250 for 3D printing

Metal 3D printing process in the chamber

3D Printed cages

Post processing including heat treatment, removal of supports, surface treatment, disinfection, etc.

Only after a series of mechanical tests, the 3D Printed cage can be applied in surgery.

Through the process of “design-3D printing-post-processing-testing”, the PANTHER can be ready for operating surgery. Currently, the PANTHER has already been applied in treatment for patients.

Advantage of Titanium 3D Printed Cage:

PANTHER has been created to optimized bone in-growth in spinal procedure, with an average pore size range of 630-730μm on the surface in contact with the vertebral body end plate and an average mesh part porosity range of 70%-80%.

Average Pore Size

Average Potosity


SHINING 3D, founded in 2004, is pioneering independent research and the development of 3D digitizing and 3D printing technologies.  SHINING 3D provides professional solutions covering “3D Digitizing – Intelligent Design – 3D Printing” for various industries including industrial manufacturing, healthcare & life sciences, product customization, and STEM education. SHINING 3D is well-positioned in the market and has the capacity to handle large sales volume, offer powerful 3D technologies, and provide strong support service. SHINING 3D’s mission is to enable flexible production of high performance, complex structural products, and make 3D imaging and manufacturing technologies accessible to all; from large multi-national corporations worldwide to at home hobbyist. As the leader among Chinese 3D printing companies, SHINING 3D has currently extended a strong international influence with customers in more than 70 different countries in Asia Pacific, Europe, North America, South America, Africa and the Middle East.